
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 10016/35303
Cloud-based robotics systems leverage a wide range of Information Technologies (IT) to offer tangible benefits like cost reduction, powerful computational capabilities, data offloading, etc. However, the centralized nature of cloud computing is not well-suited for a multitude of Operational Technologies (OT) nowadays used in robotics systems that require strict real-time guarantees and security. Edge computing and fog computing are complementary approaches that aim at mitigating some of these challenges by providing computing capabilities closer to the users. The goal of this work is hence threefold: i) to analyze the current edge computing and fog computing landscape in the context of robotics systems, ii) to experimentally evaluate an end-to-end robotics system based on solutions proposed in the literature, and iii) to experimentally identify current benefits and open challenges of edge computing and fog computing. Results show that, in the case of an exemplary delivery application comprising two mobile robots, the robot coordination and range can be improved by consuming real-time radio information available at the edge. However, our evaluation highlights that the existing software, wireless and virtualization technologies still require substantial evolution to fully support edge-based robotics systems. This work has been partially funded by European Union’s Horizon 2020 research and innovation programme under grant agreement No 101015956, and the Spanish Ministry of Economic Affairs and Digital Transformation and the European Union- NextGenerationEU through the UNICO 5G I+ D 6G-EDGEDT and 6G-DATADRIVEN
Mec, Fog05, Robótica e Informática Industrial, Ros, Information technology, Robotics, T58.5-58.64, Experimental, Fog, Edge, Virtualization, Edge robotics experimental fog MEC Virtualization ROS Fog05
Mec, Fog05, Robótica e Informática Industrial, Ros, Information technology, Robotics, T58.5-58.64, Experimental, Fog, Edge, Virtualization, Edge robotics experimental fog MEC Virtualization ROS Fog05
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 40 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
views | 20 | |
downloads | 79 |