Downloads provided by UsageCounts
pmid: 22330639
Electromagnetic warming has a long history in cryobiology as a preferred method for recovering large tissue masses from cryopreservation, especially from cryopreservation by vitrification. It is less well-known that electromagnetic fields may be able to influence ice formation during cryopreservation by non-thermal mechanisms. Both theory and published data suggest that static and oscillating electric fields can respectively promote or inhibit ice formation under certain conditions. Evidence is less persuasive for magnetic fields. Recent claims that static magnetic fields smaller than 1 mT can improve cryopreservation by freezing are specifically questioned.
Cryopreservation, Magnetics, Cryoprotective Agents, Electromagnetic Fields, Periodontal Ligament, Humans, Tissue Banks, Dental Pulp
Cryopreservation, Magnetics, Cryoprotective Agents, Electromagnetic Fields, Periodontal Ligament, Humans, Tissue Banks, Dental Pulp
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 62 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 38 | |
| downloads | 36 |

Views provided by UsageCounts
Downloads provided by UsageCounts