Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cretaceous Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cretaceous Research
Article
License: CC 0
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cretaceous Research
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

Highly specialized suspension-feeding bony fish Rhinconichthys (Actinopterygii: Pachycormiformes) from the mid-Cretaceous of the United States, England, and Japan

Authors: Bruce A. Schumacher; Kenshu Shimada; Jeff Liston; Anthony Maltese;

Highly specialized suspension-feeding bony fish Rhinconichthys (Actinopterygii: Pachycormiformes) from the mid-Cretaceous of the United States, England, and Japan

Abstract

We re-define the Cretaceous bony fish genus Rhinconichthys by re-describing the type species, R. taylori, and defining two new species; R. purgatorensis sp. nov. from the lowermost Carlile Shale (middle Turonian), southeastern Colorado, United States, and R. uyenoi sp. nov. from the Mikasa Formation (Cenomanian), Middle Yezo Group, Hokkaido, Japan. Rhinconichthys purgatoirensis sp. nov. is designated on a newly discovered specimen consisting of a nearly complete skull with pectoral elements. Only known previously by two Cenomanian age specimens from England and Japan, the North American specimen significantly extends the geographic and stratigraphic range of Rhinconichthys. The skull of Rhinconichthys is elongate, including an expansive gill basket, and estimated maximum body length ranges between 2.0 and 2.7 m. Rhinconichthys was likely an obligate suspension-feeder due to its derived cranial morphology, characterized by a remarkably large and elongate hyomandibula. The hyomandibula mechanically acts as a lever to thrust the jaw articulation and hyoid arch both ventrally and anterolaterally during protraction, thus creating a massive buccal space to maximize filtering of planktonic prey items. Cladistic analysis supports a monophyly of suspension-feeding pachycormids including Rhinconichthys, but further resolution within this clade will require more information through additional fossil specimens.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 49
    download downloads 35
  • 49
    views
    35
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
20
Top 10%
Top 10%
Top 10%
49
35
hybrid