Downloads provided by UsageCounts
In this work, we develop and analyze a formalism for solving boundary value problems in arbitrarily-shaped domains using the MADNESS (multiresolution adaptive numerical environment for scientific simulation) package for adaptive computation with multiresolution algorithms. We begin by implementing a previously-reported diffuse domain approximation for embedding the domain of interest into a larger domain (Li et al., 2009 [1]). Numerical and analytical tests both demonstrate that this approximation yields non-physical solutions with zero first and second derivatives at the boundary. This excessive smoothness leads to large numerical cancellation and confounds the dynamically-adaptive, multiresolution algorithms inside MADNESS. We thus generalize the diffuse domain approximation, producing a formalism that demonstrates first-order convergence in both near- and far-field errors. We finally apply our formalism to an electrostatics problem from nanoscience with characteristic length scales ranging from 0.0001 to 300 nm.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 21 | |
| downloads | 10 |

Views provided by UsageCounts
Downloads provided by UsageCounts