Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Energyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Energy
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Applied Energy
Article . 2019 . Peer-reviewed
http://dx.doi.org/10.1016/j.ap...
Article
License: Elsevier TDM
Data sources: Sygma
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Smart energy management algorithm for load smoothing and peak shaving based on load forecasting of an island’s power system

Authors: Chapaloglou, Spyridon; Nesiadis, Athanasios; Iliadis, Petros; Atsonios, Konstantinos; Nikolopoulos, Nikos; Grammelis, Panagiotis; Yiakopoulos, Christos; +2 Authors

Smart energy management algorithm for load smoothing and peak shaving based on load forecasting of an island’s power system

Abstract

Abstract In this study, a novel algorithm for the management of the power flows of an islanded power system was developed, capable of simultaneously achieving steadier conventional unit operation and shaving the demand peak values, for the days of the year that present a night peak in their load curve. The under investigation system is composed of Diesel Generators, a PV farm and a Battery Energy Storage System (BESS) with the power system’s consumption to be relatively higher than its RES production. The proposed algorithm combines the use of a load forecasting methodology, a pattern recognition procedure and a custom optimal power flow scheduling algorithm. The prediction module was based on a feedforward artificial neural network, capable of short-term day ahead load forecasting. The forecasted day ahead load profile was then used as an input to the developed pattern recognition algorithm, in order to be classified based on its load curve shape (pattern). Subsequently, in case that the classification resulted in a clear night peak pattern, it was possible to estimate an hourly based trajectory for the diesel generators operation and derive the BESS charging setpoints, which result in the desired peak shaving and smoothing level simultaneously. In this way, it is possible to replace or substitute the highest power demand with stored renewable energy and to operate the diesel engines as steady as possible, diminishing the ramp up and the steep gradients before the night hours’ peak. The algorithm was integrated in the overall system model in APROS software, where dynamic simulations were performed. The simulation results proved that by applying the proposed algorithm, a combined effect of smoother diesel generator operation and peak shaving with renewable energy is achievable even with the absence of PV overproduction, diminishing the variability of the load to be covered from the conventional units. Such an operation aims at enabling diesel engines to be rated at a lower, than currently, maximum capacity while increasing the share of the renewable energy penetration into the grid.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    141
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 17
    download downloads 7
  • 17
    views
    7
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
141
Top 1%
Top 10%
Top 1%
17
7
Green
hybrid