Downloads provided by UsageCounts
Abstract In order to significantly reduce vehicular fuel consumption and emission pollutants, power-split hybrid electric vehicles are increasingly deployed to ensure that internal combustion engines work at their high-efficiency regions. Because of multiple power components (internal combustion engine, two electric machines, and a driveshaft to the wheels), configurations of such vehicular powertrains are typically very complicated. In order to systematically analyze and design a fuel-optimal powertrain, an innovative hierarchical topological graph approach is proposed. This method comprises four major design processes: (1) modeling of hybrid vehicle powertrain systems, (2) generation of a configuration pool, (3) identification of isomorphism, and (4) classification of configuration modes. Potential power-split hybrid vehicle designs are rigorously examined via a dynamic programming algorithm to estimate their acceleration performance (0–100 km/h) and fuel economy in various driving cycles.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 95 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
| views | 3 | |
| downloads | 1 |

Views provided by UsageCounts
Downloads provided by UsageCounts