Downloads provided by UsageCounts
The flower of Kalmia latifolia L. employs a catapult mechanism that flings its pollen to considerable distances. Physicist Lyman J. Briggs investigated this phenomenon in the 1950s after retiring as longtime director of the National Bureau of Standards, attempting to explain how hydromechanical effects inside the flower’s stamen could make it possible. Briggs’s unfinished manuscript implies that liquid under negative pressure generates stress, which, superimposed on the stress generated from the flower’s growth habit, results in force adequate to propel the pollen as observed. With new data and biophysical understanding to supplement Briggs’s experimental results and research notes, we show that his postulated negative-pressure mechanism did not play the exclusive and crucial role that he credited to it, though his revisited investigation sheds light on various related processes. Important issues concerning the development and reproductive function of Kalmia flowers remain unresolved, highlighting the need for further biophysical advances.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 104 | |
| downloads | 33 |

Views provided by UsageCounts
Downloads provided by UsageCounts