Downloads provided by UsageCounts
AbstractCarbon nitrides (CN) have emerged as promising photoanode materials for water‐splitting photoelectrochemical cells (PECs). However, their poor charge separation and transfer properties, together with slow water‐oxidation kinetics, have resulted in low PEC activity and instability, which strongly impede their further development. In this work, these limitations are addressed by optimizing the charge separation and transfer process. To this end, a nickel–iron based metal‐organic framework, Ni/Fe‐MIL‐53, is deposited, that acts as an oxygen evolution pre‐catalyst within the CN layer and incorporate reduced graphene oxide as an electron acceptor. Upon electrochemical activation, a uniform distribution of highly active oxygen evolution reaction (OER) catalysts is obtained on the porous CN surface. Detailed mechanistic studies reveal excellent hole extraction properties with high OER catalytic activity (83% faradaic efficiency) and long‐term stability, up to 35 h. These results indicate that the decrease in performance is mainly due to the slow leaching of the catalyst from the CN layer. The CN photoanode exhibits a reproducible photocurrent density of 472 ± 20 µA cm−2 at 1.23 V versus reversible hydrogen electrode (RHE) in 0.1 m KOH, an exceptionally low onset potential of ≈0.034 V versus RHE, and high external quantum yield.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 45 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
| views | 2 | |
| downloads | 31 |

Views provided by UsageCounts
Downloads provided by UsageCounts