Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

wingless and DWnt4, 2 Drosophila Wnt genes, have related expression, regulation and function during the embryonic development.

Authors: K, Gieseler; M C, Mariol; T, Sagnier; Y, Graba; J, Pradel;

wingless and DWnt4, 2 Drosophila Wnt genes, have related expression, regulation and function during the embryonic development.

Abstract

The multigenic Wnt family encode secreted signalling molecules with important regulatory functions in various developmental processes. This paper reports an analysis of the relationships, in terms of structure, expression and function, that exist between the Drosophila genes wingless, the orthologue of the mammalian Wnt1 proto-oncogene, and DWnt4, a new member of the Wnt family. The 2 genes are physically clustered, are transcribed in overlapping embryonic territories under the control of the same regulatory molecules. Co-expression and co-regulation suggest first, that the close physical linkage results from the sharing of cis-control elements and second, that the 2 Wnt signals cooperate in developmental patterning events. Antisense RNA experiments revealed that signalling by DWnt4 is essential for cells from the anterior compartment of each parasegment to adopt a denticled fate. We propose that wingless and DWnt4 achieve opposite, but complementary functions in intrasegmental cell patterning of the embryonic ectoderm.

Keywords

Multigene Family, Ectoderm, Animals, Chromosome Mapping, Gene Expression, Gene Expression Regulation, Developmental, Drosophila, Genes, Insect

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!