Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ser¹¹⁹ phosphorylation modulates the activity and conformation of PRRXL1, a homeodomain transcription factor.

Authors: Ricardo, Soares-dos-Reis; Ana S, Pessoa; Mariana R, Matos; Miguel, Falcão; Vera M, Mendes; Bruno, Manadas; Filipe A, Monteiro; +2 Authors

Ser¹¹⁹ phosphorylation modulates the activity and conformation of PRRXL1, a homeodomain transcription factor.

Abstract

PRRXL1 [paired related homeobox-like 1; also known as DRG11 (dorsal root ganglia 11)] is a paired-like homeodomain transcription factor expressed in DRG and dSC (dorsal spinal cord) nociceptive neurons. PRRXL1 is crucial for the establishment and maintenance of nociceptive circuitry, as Prrxl1(-/-) mice present neuronal loss, reduced pain sensitivity and failure to thrive. In the present study, we show that PRRXL1 is highly phosphorylated in vivo, and that its multiple band pattern on electrophoretic analysis is the result of different phosphorylation states. PRRXL1 phosphorylation appears to be differentially regulated along the dSC and DRG development and it is mapped to two functional domains. One region comprises amino acids 107-143, whereas the other one encompasses amino acids 227-263 and displays repressor activity. Using an immunoprecipitation-MS approach, two phosphorylation sites were identified, Ser¹¹⁹ and Ser²³⁸. Phosphorylation at Ser¹¹⁹ is shown to be determinant for PRRXL1 conformation and transcriptional activity. Ser¹¹⁹ phosphorylation is thus proposed as a mechanism for regulating PRRXL1 function and conformation during nociceptive system development.

Keywords

Homeodomain Proteins, Cell Adhesion Molecules, Neuronal, Neurogenesis, Embryonic Development, Gene Expression Regulation, Developmental, Nociceptors, Mice, Inbred Strains, Nerve Tissue Proteins, GPI-Linked Proteins, Peptide Fragments, Cell Line, Mice, Ganglia, Spinal, Animals, Humans, Female, Mutant Proteins, Phosphorylation, Promoter Regions, Genetic, Protein Processing, Post-Translational

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?