
We prove a local in time existence and uniqueness theorem of classical solutions of the coupled Einstein{Euler system, and therefore establish the well posedness of this system. We use the condition that the energy density might vanish or tends to zero at infinity and that the pressure is a certain function of the energy density, conditions which are used to describe simplified stellar models. In order to achieve our goals we are enforced, by the complexity of the problem, to deal with these equations in a new type of weighted Sobolev spaces of fractional order. Beside their construction, we develop tools for PDEs and techniques for hyperbolic and elliptic equations in these spaces. The well posedness is obtained in these spaces.
ddc:510, Institut für Mathematik
ddc:510, Institut für Mathematik
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
