
Utilization of heat from gases leaving the waelz process is a promising way to increase its energy efficiency and environmental safety. Taking into account the gas dustiness, the most rational is the use of a loop air heater, which is a multi-pass and multi-section heat exchanger with a complex mixed scheme of coolant movement. In modern conditions, when the methods and means of calculation of such devices are simplified, the task of obtaining improved methods and means of calculation, determining the efficiency and reliability of their work is relevant. Two mathematical models of the process of heat transfer and hydroaerodynamics in a multi-pass tubular air heater with a cross-circuit of coolants are used. The developed models for the loop air heater are based on the main methods of thermal calculation: a simpler method of correction factor to the average logarithmic temperature pressure and a discrete P-NTU method, which allows obtaining local thermal characteristics of the surface. Diagrams of distribution of heat transfer coefficients, heat transfer, local temperatures of flue gases, air and pipe walls are constructed. The influence of dust and dust particle size on heat transfer is determined. When the flue gas dust is 50 g/Nm3 and with a dust particle size of 1 μm, the heat transfer coefficient increases by 12 %. The application of the air heater design with different schemes of coolant movement is substantiated. The developed universal methods allow determining the thermal productivity of heat exchangers and obtaining the distribution of local temperature characteristics on the heating surface. It is also possible to identify places of possible overheating of the heat exchange surface and the course of corrosion processes, taking into account the design of recuperators, operating conditions, operating modes and different schemes of coolant movement
метод поправочного коэффициента, loop air heater (heat recovery), P-NTU-method, перехресна схема руху теплоносіїв, перекрестная схема движения теплоносителей, P-NTU-метод, cross-circuit of coolant motion, энергоэффективность, метод поправкового коефіцієнту, енергоефективність, correction factor method, Indonesia, петлевий повітронагрівач (теплоутилізатор), дискретный (интервальный) расчет, discrete (interval) calculation, energy efficiency, петлевой воздухонагреватель (теплоутилизатор), дискретний (інтервальний) розрахунок
метод поправочного коэффициента, loop air heater (heat recovery), P-NTU-method, перехресна схема руху теплоносіїв, перекрестная схема движения теплоносителей, P-NTU-метод, cross-circuit of coolant motion, энергоэффективность, метод поправкового коефіцієнту, енергоефективність, correction factor method, Indonesia, петлевий повітронагрівач (теплоутилізатор), дискретный (интервальный) расчет, discrete (interval) calculation, energy efficiency, петлевой воздухонагреватель (теплоутилизатор), дискретний (інтервальний) розрахунок
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
