Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Pergamosarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Pergamos
Article . 2016
Data sources: Pergamos
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Boosting the Efficiency of Large-Scale Entity Resolution with Enhanced Meta-Blocking

Authors: Papadakis, G. Papastefanatos, G. Palpanas, T. Koubarakis, M.;

Boosting the Efficiency of Large-Scale Entity Resolution with Enhanced Meta-Blocking

Abstract

Entity Resolution constitutes a quadratic task that typically scales to large entity collections through blocking. The resulting blocks can be restructured by Meta-blocking to raise precision at a limited cost in recall. At the core of this procedure lies the blocking graph, where the nodes correspond to entities and the edges connect the comparable pairs. There are several configurations for Meta-blocking, but no hints on best practices. In general, the node-centric approaches are more robust and suitable for a series of applications, but suffer from low precision, due to the large number of unnecessary comparisons they retain. In this work, we present three novel methods for node-centric Meta-blocking that significantly improve precision. We also introduce a pre-processing method that restricts the size of the blocking graph by removing a large number of noisy edges. As a result, it reduces the overhead time of Meta-blocking by 2 to 5 times, while increasing precision by up to an order of magnitude for a minor cost in recall. The same technique can be applied as graph-free Meta-blocking, enabling for the first time Entity Resolution over very large datasets even on commodity hardware. We evaluate our approaches through an extensive experimental study over 19 voluminous, established datasets. The outcomes indicate best practices for the configuration of Meta-blocking and verify that our techniques reduce the resolution time of state-of-the-art methods by up to an order of magnitude. © 2016 Elsevier Inc.

Country
Greece
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green