Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A finite element/volume method model of the depth-averaged horizontally 2D shallow water equations

A finite element/volume method model of the depth-averaged horizontally 2D shallow water equations

Abstract

Analysis of surface water flows is of central importance in understanding and predicting a wide range of water engineering issues. Dynamics of surface water is reasonably well described using the shallow water equations (SWEs) with the hydrostatic pressure assumption. The SWEs are nonlinear hyperbolic partial differential equations that are in general required to be solved numerically. Application of a simple and efficient numerical model is desirable for solving the SWEs in practical problems. This study develops a new numerical model of the depth-averaged horizontally 2D SWEs referred to as 2D finite element/volume method (2D FEVM) model. The continuity equation is solved with the conforming, standard Galerkin FEM scheme and momentum equations with an upwind, cell-centered finite volume method scheme, utilizing the water surface elevation and the line discharges as unknowns aligned in a staggered manner. The 2D FEVM model relies on neither Riemann solvers nor high-resolution algorithms in order to serve as a simple numerical model. Water at a rest state is exactly preserved in the model. A fully explicit temporal integration is achieved in the model using an efficient approximate matrix inversion method. A series of test problems, containing three benchmark problems and three experiments of transcritical flows, are carried out to assess accuracy and versatility of the model.

Powered by OpenAIRE graph
Found an issue? Give us feedback
bronze
Related to Research communities