
This paper describes SENSELEARNER --- a minimally supervised word sense disambiguation system that attempts to disambiguate all content words in a text using WordNet senses. We evaluate the accuracy of SENSELEARNER on several standard sense-annotated data sets, and show that it compares favorably with the best results reported during the recent SENSEVAL evaluations.
word sense disambiguation, SenseLearner, sense annotated data sets, WordNet senses
word sense disambiguation, SenseLearner, sense annotated data sets, WordNet senses
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 26 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
