<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 10753597
In order to develop an alternative method to antibiotics for preventing bacillary necrosis in bivalve mollusc larvae, we examined the effects of ovoglobulins (proteins derived from the whites of hens' eggs) on the survival of larvae of the Pacific oyster Crassostrea gigas. The pathogenic Vibrio tubiashii (ATCC 19106) was used to infect larvae of the Pacific oyster. V. tubiashii showed strong pathogenicity to oyster larvae, causing 100% mortality after experimental exposure for 24 h at a concentration of 10(5) cfu (colony-forming units)/ml. In contrast, the addition of ovoglobulins at a concentration of 10 microg/ml to larval oysters, challenged with V. tubiashii at 10(5) cfu/ml, led to a marked increase in larval survival of 96.5% at 24 h after infection. The V. tubiashii culture supernatant was also shown to be pathogenic to larval oysters; however, its pathogenicity was completely inhibited by the addition of 10 microg/ml of ovoglobulins. Larval oysters infected by V. tubiashii showed typical symptoms of bacillary necrosis including anomalous swimming and detachment of cilia and/or vela. In contrast, live larvae were actively motile, and their cilia and vela were not necrotized in the ovoglobulins-added group. The addition of ovoglobulins clearly suppressed the growth of V. tubiashii in gelatin-sea water broth, but the number of viable V. tubiashii 24 h after incubation did not decrease to the initial dose level. Findings obtained in this study indicate that ovoglobulins almost completely protect larval oysters from V. tubiashii infection by nonbactericidally inhibiting the growth of V. tubiashii without affecting survival of the oysters.
Cell-Free System, Larva, Egg Proteins, Animals, Ostreidae, Culture Media, Vibrio
Cell-Free System, Larva, Egg Proteins, Animals, Ostreidae, Culture Media, Vibrio
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 26 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |