
The frequency-estimation performance of the forward-backward linear prediction (FBLP) method of Nuttall/Uhych and Clayton, is significantly improved for short data records and low signal-to-noise ratio (SNR) by using information about the rank M of the signal correlation matrix. A source for the improvement is an implied replacement of the usual estimated correlation matrix by a least squares approximation matrix having the lower rank M. A second, related cause for the improvement is an increase in the order of the prediction filter beyond conventional limits. Computationally, the recommended signal processing is the same as for the FBLP method, except that the vector of prediction coefficients is formed from a linear combination of the M principal eigenvectors of the estimated correlation matrix. Alternatively, singular value decomposition can be used in the implementation. In one special case, which we call the Kumaresan-Prony (KP) case, the new prediction coefficients can be calculated in a very simple way. Philosophically, the improvement can be considered to result from a preliminary estimation of the explainable, predictable components of the data, rather than attempting to explain all of the observed data by linear prediction.
620
620
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 769 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.01% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
