Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Astrophysical Jo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Astrophysical Journal
Article . 2020 . Peer-reviewed
License: IOP Copyright Policies
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Lirias
Article . 2020
Data sources: Lirias
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://dx.doi.org/10.48550/ar...
Article . 2019
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

HST/COS Spectra of the Wind Lines of VFTS 102 and 285

Authors: Katherine Shepard; Douglas R. Gies; Kathryn V. Lester; Luqian Wang; Zhao Guo; Lex Kaper; Alex De Koter; +1 Authors

HST/COS Spectra of the Wind Lines of VFTS 102 and 285

Abstract

Abstract Rapid rotation in massive stars imposes a latitudinal variation in the mass loss from radiatively driven winds that can lead to enhanced mass loss at the poles (with little angular momentum loss) and/or equator (with maximal angular momentum loss). Here we present an examination of the stellar wind lines of the two O-type stars with the fastest known equatorial velocities, VFTS 102 ( km s−1; O9: Vnnne+) and VFTS 285 ( km s−1; O7.5 Vnnn) in the Large Magellanic Cloud. Ultraviolet spectra of both stars were obtained with the Hubble Space Telescope Cosmic Origins Spectrograph. The spectrum of VFTS 285 displays a fast outflow in N v and a much slower wind in Si iv, and we argue that there is a two-wind regime in which mass loss is strong at the poles (fast and tenuous wind) but dominant at the equator (slow and dense winds). These ions and wind lines are not present in the spectrum of the cooler star VFTS 102, but the double-peaked Hα emission in its spectrum implies equatorial mass loss into a circumstellar disk. The results suggest that in the fastest rotating O-stars, most mass is lost as an equatorial outflow, promoting angular momentum loss that contributes to a spin-down over time.

Keywords

RADIATION-DRIVEN WINDS, INHIBITION, PROGENITOR, FOS: Physical sciences, Astronomy & Astrophysics, 530, 5109 Space sciences, STELLAR WINDS, 5107 Particle and high energy physics, 0201 Astronomical and Space Sciences, Solar and Stellar Astrophysics (astro-ph.SR), ASSOCIATIONS, HD-93521, 0306 Physical Chemistry (incl. Structural), Science & Technology, DISK FORMATION, 520, EXTINCTION, Astrophysics - Solar and Stellar Astrophysics, Physical Sciences, 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics, O-STARS, MASSIVE STARS, 5101 Astronomical sciences

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Average
Green
gold