
Both simulations and machine experience at the CERN-SPS and LHC have shown that the electron cloud has a lower build up threshold in quadrupoles than in dipoles and field free regions. As a consequence, while beam induced scrubbing can efficiently suppress the electron cloud in both dipoles and field free regions, a residual electron cloud can still survive in the quadrupoles and potentially degrade the beam quality. To study this effect, a PyECLOUD module for electron tracking in quadrupole fields including effects of secondary emission at the vacuum chamber has been implemented in PyHEADTAIL. With this module, the effect of the electron cloud in quadrupoles on beam stability and beam quality preservation can be assessed, as well as its impact on future LHC and HL-LHC operation.
Proceedings of the 6th Int. Particle Accelerator Conf., IPAC2015, Richmond, VA, USA
5: Beam Dynamics and EM Fields, Accelerator Physics
5: Beam Dynamics and EM Fields, Accelerator Physics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
