Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao zbMATH Openarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2003
Data sources: zbMATH Open
Analysis and Applications
Article . 2003 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

ON THE ASYMPTOTIC BEHAVIOR OF HEATING TIMES

On the asymptotic behavior of heating times.
Authors: Chang, Chin-Huei; Chow, Yun Shyong; Wang, Zhen;

ON THE ASYMPTOTIC BEHAVIOR OF HEATING TIMES

Abstract

An infinite homogeneous d-dimensional medium initially is at zero temperature, u=0. A heat impulse is applied at the origin, raising the temperature there to a value greater than a constant value u0>0. The temperature at the origin then decays, and when it reaches u0, another equal-sized heat impulse is applied at a normalized time τ1=1. Subsequent equal-sized heat impulses are applied at the origin at the normalized times τn, n=2,3,…, when the temperature there has decayed to u0. This sequence of normalized waiting times τn can be defined recursively by [Formula: see text] where d>0. This heat conduction problem was studied by Myshkis (J. Differential Equations Appl.3 (1997), 89–91), and he posed the problem to find an asymptotic expression for the τn as n→∞. The cases for dimensions d=1 and d≥3 have been treated by Chen, Chow, and Hsieh (J. Differential Equations Appl.6 (2000), 309–318). Here, we deal with the two-dimensional case, d=2.

Related Organizations
Keywords

Stability of difference equations, heat equation, Heat equation, Difference equation, recurrent relation, asymptotic behavior, Feedback control

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!