<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.1130/b35236.1
handle: 20.500.14243/391086 , 20.500.14243/409723 , 11391/1475663
Abstract The chemical composition of river waters gives a measure of the atmospheric CO2 fixed by chemical weathering processes. Since the dominating factors controlling these processes are lithology and runoff, as well as uplift and erosion, we introduce a new simplified geo-lithological map of the Alps (Alpine-Geo-LiM) that adopted a lithological classification compliant with the methods most used in literature for estimating the consumption of atmospheric CO2 by chemical weathering. The map was used together with published alkalinity data of the 33 main Alpine rivers (1) to investigate the relationship between bicarbonate concentration in the sampled waters and the lithologies of the corresponding drained basins, and (2) to quantify the atmospheric CO2 consumed by chemical weathering. The analyses confirm (as known by the literature) that carbonates are lithologies highly prone to consuming atmospheric CO2. Moreover, the analyses show that sandstone (which could have a nonnegligible carbonate component) plays an important role in consuming atmospheric CO2. Another result is that in multilithological basins containing lithologies more prone to consuming atmospheric CO2, the contribution of igneous rocks to the atmospheric CO2 consumption is negligible. Alpine-Geo-LiM has several novel features when compared with published global lithological maps. One novel feature is due to the attention paid in discriminating metamorphic rocks, which were classified according to the chemistry of protoliths. The second novel feature is that the procedure used for the definition of the map was made available on the Web to allow the replicability and reproducibility of the product.
Global carbon cycle, NEANIAS Atmospheric Research Community, Chemical weathering, Alps, Geology, Geo-lithological map, Carbon cycle, lithology
Global carbon cycle, NEANIAS Atmospheric Research Community, Chemical weathering, Alps, Geology, Geo-lithological map, Carbon cycle, lithology
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |