Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archive for Rational...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Archive for Rational Mechanics and Analysis
Article . 1982 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 1982
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A model for harmonics on stringed instruments

Authors: Bamberger, A.; Rauch, Jeffrey; Taylor, M.;

A model for harmonics on stringed instruments

Abstract

Es wird ein mathematisches Modell für die Erzeugung von Flageolettönen auf Streichinstrumenten angegeben, d.h. für das Erzeugen hoher flötenartiger Töne durch leichtes Fingeraufsetzen auf eine Saite, die mit dem Bogen gestrichen wird. Das Modell besteht aus folgendem Randwertproblem: \[ (1)\;u_{tt}+b(x)u_ t=u_{xx}\text{ für }0\leq x\leq \pi,\;t\geq 0, \] \[ (2)\;u(t,0)=u(t,\pi)\text{ für alle }t\geq 0, \] wobei \(b(x)\geq 0\) auf \([0,\pi]\) und \(b(x)=0\) außerhalb einer kleinen Umgebung von \(a\in(0,\pi)\). (a ist die Stelle, an der der Finger auf der Saite \([0,\pi]\) aufsetzt.) Gleichung (1) wird als Näherung für die Distributionsgleichung \[ (3)u_{tt}+\alpha \delta(x-a)u_ t=u_{xx},\quad \alpha =\int^{\pi}_{0}b(x)dx \] angesehen, die im folgenden vorrangig untersucht wird. Mit Hilbertraummethoden wird das Problem in eine parabolische Operatorgleichung \(U_ t=G_{\alpha}U\) überführt. Das Spektrum des linearen, maximal dissipativen Operators \(G_{\alpha}\) wird in mehreren Sätzen genau untersucht, insbesondere für die Fälle a/\(\pi\) rational und a/\(\pi\) irrational (Druckfehler in Theorem 4: a/\(\pi\) statt q/\(\pi\) einsetzen). Mit Hilfe der Halbgruppentheorie linearer Operatoren wird das Verhalten der Lösungen geklärt. Die Lösungen spiegeln qualitativ die auftretenden Effekte beim Flageolett auf Saiteninstrumenten gut wieder. Erstaunlich ist, welche tiefen Mittel der Funktionalanalysis herangezogen werden müssen, um dieses einfach scheinende Phänomen erklären zu können. Die bewiesenen Sätze sind auch unabhängig von der schwingenden Saite sehr interessant.

Country
United States
Keywords

Fluids, semigroups of linear operators, oscillating string, Neural Networks, General theory of partial differential operators, Physics, Science, Complex Systems, maxmal dissipative operator, Mechanics, Linear accretive operators, dissipative operators, etc., Other numerical methods in solid mechanics, Groups and semigroups of linear operators, Electromagnetism, Nonlinear Dynamics, Optics and Lasers, Mathematical and Computational Physics, Chaos, Initial value problems for second-order parabolic equations, Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Average
Top 10%
Average
bronze