Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioresource Technology
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Development of a UBFC biocatalyst fuel cell to generate power and treat industrial wastewaters

Authors: Sunee Laehlah; Chontisa Sukkasem;

Development of a UBFC biocatalyst fuel cell to generate power and treat industrial wastewaters

Abstract

Agro-industry wastewaters normally contain high levels of organic matter and require suitable treatment before discharge. The use of Microbial fuel cells, a novel wastewater treatment, can provide advantages over existing treatment methods. In this study, an up-flow bio-filter circuit (UBFC) for treating wastewaters without chemical treatment or nutrient supplement, was developed to solve a clogging problem. The optimal conditions included an organic loading rate of 30.0 g COD/L-d, hydraulic retention time of 1.04 day, pH level of 5.6-6.5 and aeration at 2.0 L/min. External resistance of the circuit was tested. COD removal levels of 8.08, 20.1 and 26.67 g COD/L-d were obtained, while fed with sea food, biodiesel and palm oil mill wastewater, respectively. These rates are higher than for conventional technologies. The carbon fiber brush immobilized base increased the performance of the new UBFC by 17.54% over that obtained in a previous study, while the cost was slightly decreased about 4.48%.

Related Organizations
Keywords

Biological Oxygen Demand Analysis, Bioelectric Energy Sources, Industrial Waste, Equipment Design, Hydrogen-Ion Concentration, Palm Oil, Wastewater, Waste Disposal, Fluid, Carbon, Catalysis, Water Purification, Bioreactors, Seafood, Carbon Fiber, Biofuels, Fermentation, Food Industry, Plant Oils, Filtration, Water Pollutants, Chemical

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?