Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Commentationes Mathe...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2016
Data sources: zbMATH Open
Commentationes Mathematicae Universitatis Carolinae
Article . 2016 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Diagonals of separately continuous functions of $n$ variables with values in strongly $\sigma$-metrizable spaces

Diagonals of separately continuous functions of \(n\) variables with values in strongly \(\sigma \)-metrizable spaces.
Authors: Karlova, Olena; Mykhaylyuk, Volodymyr; Sobchuk, Oleksandr;

Diagonals of separately continuous functions of $n$ variables with values in strongly $\sigma$-metrizable spaces

Abstract

For a function \(f:X^n\to Y\) the mapping \(g:X\to Y\) defined by \(g(x)=f(x,\dots, x)\) is called a diagonal of \(f\). It is well-known that for \(n\geq 2\) diagonals of separately continuous functions \(f:\mathbb{R}^n\to\mathbb{R}\) are exactly the functions of the \((n-1)\)-th Baire class. If \(X\) is any topological space then for every function \(g:X\to\mathbb{R}\) of the \(n\)-th Baire class there exists a separately continuous function \(f:X^{n+1}\to\mathbb{R}\) with the diagonal \(g\), see \textit{V. V. Mykhaĭlyuk} [Ukr. Mat. Visn. 3, No. 3, 374--381 (2006); translation in Ukr. Math. Bull. 3, No. 3, 361--368 (2006; Zbl. 1152.54331)]. In the paper under review the authors study the analogous problem for functions with values in a space \(Z\) from a wide class of spaces which contains metrizable equiconnected spaces and strict inductive limits of sequences of closed locally convex metrizable subspaces. Namely, assuming that \(X\) is a topological space and \(Z\) is a strongly \(\sigma\)-metrizable equiconnected space with a perfect stratification they prove that for a given function of the \(n\)-th Baire class \(g:X\to Z\) there exists a separately continuous function \(f:X^{n+1}\to Z\) with the diagonal \(g\). They also construct an example of an equiconnected space \(Z\) and a Baire-one function \(g:[0,1]\to Z\) which is not a diagonal of any separately continuous function \(f:[0,1]^2\to Z\).

Keywords

equiconnected space, \(PP\)-space, Baire-one function, \(n\)-th Baire class, separately continuous mapping, Weak and generalized continuity, strongly \(\sigma\)-metrizable space, Continuity and differentiation questions, Continuous maps, diagonal of a mapping

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
bronze