
The problem of finding the shortest watchman route in a simple polygon P through a point s on its boundary is considered. A route is a watchman route if every point inside P can be seen from at least one point along the route. We present an incremental algorithm that constructs the shortest watchman route in O(n3) time for a simple polygon with n edges. This improves the previous O(n4) bound.
essential cuts, Analysis of algorithms and problem complexity, Computer graphics; computational geometry (digital and algorithmic aspects), computational geometry, watchman routes, incremental algorithm
essential cuts, Analysis of algorithms and problem complexity, Computer graphics; computational geometry (digital and algorithmic aspects), computational geometry, watchman routes, incremental algorithm
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 33 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
