Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Circulationarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Circulation
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Circulation
Article . 2006 . Peer-reviewed
Data sources: Crossref
Circulation
Article . 2006
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Identification of the Oxidized Low-Density Lipoprotein Scavenger Receptor CD36 in Plasma

A Novel Marker of Insulin Resistance
Authors: Handberg, Aase; Levin, Klaus; Højlund, Kurt; Beck-Nielsen, Henning;

Identification of the Oxidized Low-Density Lipoprotein Scavenger Receptor CD36 in Plasma

Abstract

Background— Macrophage CD36 scavenges oxidized low-density lipoprotein, leading to foam cell formation, and appears to be a key proatherogenic molecule. Increased expression of CD36 has been attributed to hyperglycemia and to defective macrophage insulin signaling in insulin resistance. Premature atherosclerosis is the major cause of morbidity and mortality in type 2 diabetes. Here, we report the identification of a soluble form of CD36 (sCD36) in plasma and hypothesize that sCD36 would be elevated in patients with type 2 diabetes and insulin resistance. Methods and Results— sCD36 in plasma was demonstrated by immunopurification and Western blotting. We established ELISA assays to determine sCD36 in plasma and measured sCD36 in obese type 2 diabetic patients, obese nondiabetic relatives, and obese and lean control subjects. sCD36 was markedly elevated in type 2 diabetic patients compared with both lean (5-fold) and obese (2- to 3-fold) control subjects. There was a strong, inverse correlation between sCD36 and insulin-stimulated glucose disposal and a direct correlation with fasting plasma glucose, fasting insulin, and body mass index. Conclusions— Our study demonstrates sCD36 in plasma for the first time. sCD36 is highly related to risk factors of accelerated atherosclerosis in type 2 diabetes such as insulin resistance and glycemic control, and we propose that sCD36 might represent a marker of the metabolic syndrome and a potential surrogate marker of atherosclerosis.

Country
Denmark
Keywords

Adult, Blood Glucose, CD36 Antigens, Male, Lipoproteins, Antigens, CD36, LDL, Scavenger, Risk Factors, Receptors, Diabetes Mellitus, Humans, Insulin, Obesity, Antigens, Receptors, Scavenger, Middle Aged, Atherosclerosis, Lipoproteins, LDL, Diabetes Mellitus, Type 2, Case-Control Studies, Regression Analysis, Biological Markers, Female, Insulin Resistance, CD36, Type 2, Biomarkers

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    139
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
139
Top 10%
Top 10%
Top 10%
bronze