Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aircraft Engineering...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Aircraft Engineering and Aerospace Technology
Article . 2020 . Peer-reviewed
License: Emerald Insight Site Policies
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Turbojet direct-thrust control scheme for full-envelope fuel consumption minimization

Authors: Francisco Villarreal-Valderrama; Carlos Santana Delgado; Patricia Del Carmen Zambrano-Robledo; Luis Amezquita-Brooks;

Turbojet direct-thrust control scheme for full-envelope fuel consumption minimization

Abstract

Purpose Reducing fuel consumption of unmanned aerial vehicles (UAVs) during transient operation is a cornerstone to achieve environment-friendly operations. The purpose of this paper is to develop a control scheme that improves the fuel economy of a turbojet in its full operating envelope. Design/methodology/approach A novel direct-thrust linear quadratic integral (LQI) approach, comprised by an optimal observer/controller satisfying specified performance parameters, is presented. The thrust estimator, based in a Wiener model, is validated with the experimental data of a micro-turbojet. Model uncertainty is characterized by analyzing variations between the identified model and measured data. The resulting uncertainty range is used to verify closed-loop stability with the circle criterion. The proposed controller provides stable responses with the specified performance in the whole operating range, even with after considering plant nonlinearities. Finally, the direct-thrust LQI is compared with a standard thrust controller to assess fuel economy and performance. Findings The direct-thrust LQI approach reduced the fuel consumption by 2.1090% in the most realistic scenario. The controllers were also evaluated using the environmental effect parameter (EEP) and transient-thrust-specific fuel consumption (T-TSFC). These novel metrics are proposed to evaluate the environmental impact during transient-thrust operations. The direct-thrust LQI approach has a more efficient fuel consumption according to these metrics. The results also show that isolating the thrust dynamics within the feedback loop has an important impact in fuel economy. Controllers were also evaluated using the EEP and T-TSFC. These novel metrics are proposed to evaluate the environmental impact during transient-thrust operations. The direct-thrust LQI approach has a more efficient fuel consumption according to these metrics. The results also show that isolating the thrust dynamics within the feedback loop has an important impact in fuel economy. Originality/value This study shows the design of an effective direct-thrust control approach that minimizes fuel consumption, ensures stable responses for the full operation range, allows isolating the thrust dynamics when designing the controller and is compatible with classical robustness and performance metrics. Finally, the study shows that a simple controller can reduce the fuel consumption of the turbojet during transient operation in scenarios that approximate realistic operating conditions.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!