Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ GigaSciencearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
GigaScience
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
GigaScience
Article . 2023
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1101/2023.0...
Article . 2023 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A high-quality pseudo-phased genome forMelaleuca quinquenerviashows allelic diversity of NLR-type resistance genes

Authors: Stephanie H Chen; Alyssa M Martino; Zhenyan Luo; Benjamin Schwessinger; Ashley Jones; Tamene Tolessa; Jason G Bragg; +2 Authors

A high-quality pseudo-phased genome forMelaleuca quinquenerviashows allelic diversity of NLR-type resistance genes

Abstract

AbstractBackgroundThe coastal wetland tree speciesMelaleuca quinquenervia(Cav.) S.T.Blake (Myrtaceae), commonly named the broad-leaved paperbark, is a foundation species in eastern Australia, Indonesia, Papua New Guinea, and New Caledonia. The species has been widely grown as an ornamental, becoming invasive in areas such as Florida in the United States. Long-lived trees must respond to a wide range pests and pathogens throughout their lifespan, and immune receptors encoded by the nucleotide- binding domain and leucine-rich repeat containing (NLR) gene family play a key role in plant stress responses. Expansion of this gene family is driven largely by tandem duplication, resulting in a clustering arrangement on chromosomes. Due to this clustering and their highly repetitive domain structure, comprehensive annotation of NLR encoding genes within genomes has been difficult. Additionally, as many genomes are still presented in their haploid, collapsed state, the full allelic diversity of the NLR gene family has not been widely published for outcrossing tree species.ResultsWe assembled a chromosome-level pseudo-phased genome forM.quinquenerviaand describe the full allelic diversity of plant NLRs using the novel FindPlantNLRs pipeline. Analysis reveals variation in the number of NLR genes on each haplotype, differences in clusters and in the types and numbers of novel integrated domains.ConclusionsWe anticipate that the high quality of the genome forM. quinquenerviawill provide a new framework for functional and evolutionary studies into this important tree species. Our results indicate a likely role for maintenance of NLR allelic diversity to enable response to environmental stress, and we suggest that this allelic diversity may be even more important for long-lived plants.

Keywords

Research, Plants, Melaleuca, Biological Evolution, Alleles, Trees, Plant Diseases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Average
Top 10%
Green
gold