
We consider the uniformly bounded orthonormal system of functions $$ u_n^{(\l)}(x)= \varphi_n^{(\lambda)}(\cos x)(\sin x)^\lambda, \qquad x\in [0,\pi], $$ where $\{\varphi_n^{(\lambda)}\}_{n=0}^\infty \,\, (\lambda > 0)$ is the normalized system of ultraspherical polynomials. R. Askey and S. Wainger proved that the $L^p$-norm $(1 < p < \infty)$ of any linear combination of the first $N+1$ functions $u_n^{(\lambda)}(x)$ is equivalent to the $L^p$-norm of the even trigonometric polynomial of degree $N$ with the same coefficients. This theorem fails if $p=1 $ or $p=\infty.$ Studying these limiting cases, we prove (for $0 < \lambda < 1$) similar transplantation theorems in $\mbox{Re } H^1$ and $\mbox{BMO}.$
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
