Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Constructive Approxi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Constructive Approximation
Article . 2004 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

Transplantation Theorems for Ultraspherical Polynomials in Re H1 and BMO

Authors: V.I. Kolyada;

Transplantation Theorems for Ultraspherical Polynomials in Re H1 and BMO

Abstract

We consider the uniformly bounded orthonormal system of functions $$ u_n^{(\l)}(x)= \varphi_n^{(\lambda)}(\cos x)(\sin x)^\lambda, \qquad x\in [0,\pi], $$ where $\{\varphi_n^{(\lambda)}\}_{n=0}^\infty \,\, (\lambda > 0)$ is the normalized system of ultraspherical polynomials. R. Askey and S. Wainger proved that the $L^p$-norm $(1 < p < \infty)$ of any linear combination of the first $N+1$ functions $u_n^{(\lambda)}(x)$ is equivalent to the $L^p$-norm of the even trigonometric polynomial of degree $N$ with the same coefficients. This theorem fails if $p=1 $ or $p=\infty.$ Studying these limiting cases, we prove (for $0 < \lambda < 1$) similar transplantation theorems in $\mbox{Re } H^1$ and $\mbox{BMO}.$

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!