Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2004 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Tumor Necrosis Factor (TNF)-mediated Neuroprotection against Glutamate-induced Excitotoxicity Is Enhanced by N-Methyl-D-aspartate Receptor Activation

Essential role of a TNF receptor 2-mediated phosphatidylinositol 3-kinase-dependent NF-κB pathway
Authors: Klaus Pfizenmaier; Matthias Klein; Katalin Schlett; Katalin Schlett; L. Marchetti; Ulrich L. M. Eisel;

Tumor Necrosis Factor (TNF)-mediated Neuroprotection against Glutamate-induced Excitotoxicity Is Enhanced by N-Methyl-D-aspartate Receptor Activation

Abstract

We have previously shown that two tumor necrosis factor (TNF) receptors (TNFR) exhibit antagonistic functions during neurodegenerative processes in vivo with TNFR1 aggravating and TNFR2 reducing neuronal cell loss, respectively. To elucidate the neuroprotective signaling pathways of TNFR2, we investigated glutamate-induced excitotoxicity in primary cortical neurons. TNF-expressing neurons from TNF-transgenic mice were found to be strongly protected from glutamate-induced apoptosis. Neurons from wild type and TNFR1(-/-) mice prestimulated with TNF or agonistic TNFR2-specific antibodies were also resistant to excitotoxicity, whereas TNFR2(-/-) neurons died upon glutamate and/or TNF exposures. Both protein kinase B/Akt and nuclear factor-kappa B (NF-kappa B) activation were apparent upon TNF treatment. Both TNFR1 and TNFR2 induced the NF-kappa B pathway, yet with distinguishable kinetics and upstream activating components, TNFR1 only induced transient NF-kappa B activation, whereas TNFR2 facilitated long term phosphatidylinositol 3-kinase-dependent NF-kappa B activation strictly. Glutamate-induced triggering of the ionotropic N-methyl-D-aspartate receptor was required for the enhanced and persistent phosphatidylinositol 3-kinase-dependent NF-kappa B activation by TNFR2, indicating a positive cooperation of TNF and neurotransmitter-induced signal pathways. TNFR2-induced persistent NF-kappa B activity was essential for neuronal survival. Thus, the duration of NF-kappa B activation is a critical determinant for sensitivity toward excitotoxic stress and is dependent on a differential upstream signal pathway usage of the two TNFRs.

Countries
Hungary, Netherlands
Keywords

EXPRESSION, Cell Survival, Blotting, Western, Glutamic Acid, Apoptosis, Mice, Transgenic, Mice, Glutamates, Antigens, CD, ZETA-PKC, INJURY, KINASE, Animals, Cells, Cultured, TRANSGENIC MICE, Cell Nucleus, Cell Death, Dose-Response Relationship, Drug, Models, Genetic, AKT, CENTRAL-NERVOUS-SYSTEM, NF-kappa B, FACTOR-ALPHA, Brain, Blotting, Northern, Immunohistochemistry, Enzyme Activation, Kinetics, SUBUNIT, SURVIVAL

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    383
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
383
Top 1%
Top 1%
Top 1%
Green
gold