<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
We have previously shown that two tumor necrosis factor (TNF) receptors (TNFR) exhibit antagonistic functions during neurodegenerative processes in vivo with TNFR1 aggravating and TNFR2 reducing neuronal cell loss, respectively. To elucidate the neuroprotective signaling pathways of TNFR2, we investigated glutamate-induced excitotoxicity in primary cortical neurons. TNF-expressing neurons from TNF-transgenic mice were found to be strongly protected from glutamate-induced apoptosis. Neurons from wild type and TNFR1(-/-) mice prestimulated with TNF or agonistic TNFR2-specific antibodies were also resistant to excitotoxicity, whereas TNFR2(-/-) neurons died upon glutamate and/or TNF exposures. Both protein kinase B/Akt and nuclear factor-kappa B (NF-kappa B) activation were apparent upon TNF treatment. Both TNFR1 and TNFR2 induced the NF-kappa B pathway, yet with distinguishable kinetics and upstream activating components, TNFR1 only induced transient NF-kappa B activation, whereas TNFR2 facilitated long term phosphatidylinositol 3-kinase-dependent NF-kappa B activation strictly. Glutamate-induced triggering of the ionotropic N-methyl-D-aspartate receptor was required for the enhanced and persistent phosphatidylinositol 3-kinase-dependent NF-kappa B activation by TNFR2, indicating a positive cooperation of TNF and neurotransmitter-induced signal pathways. TNFR2-induced persistent NF-kappa B activity was essential for neuronal survival. Thus, the duration of NF-kappa B activation is a critical determinant for sensitivity toward excitotoxic stress and is dependent on a differential upstream signal pathway usage of the two TNFRs.
EXPRESSION, Cell Survival, Blotting, Western, Glutamic Acid, Apoptosis, Mice, Transgenic, Mice, Glutamates, Antigens, CD, ZETA-PKC, INJURY, KINASE, Animals, Cells, Cultured, TRANSGENIC MICE, Cell Nucleus, Cell Death, Dose-Response Relationship, Drug, Models, Genetic, AKT, CENTRAL-NERVOUS-SYSTEM, NF-kappa B, FACTOR-ALPHA, Brain, Blotting, Northern, Immunohistochemistry, Enzyme Activation, Kinetics, SUBUNIT, SURVIVAL
EXPRESSION, Cell Survival, Blotting, Western, Glutamic Acid, Apoptosis, Mice, Transgenic, Mice, Glutamates, Antigens, CD, ZETA-PKC, INJURY, KINASE, Animals, Cells, Cultured, TRANSGENIC MICE, Cell Nucleus, Cell Death, Dose-Response Relationship, Drug, Models, Genetic, AKT, CENTRAL-NERVOUS-SYSTEM, NF-kappa B, FACTOR-ALPHA, Brain, Blotting, Northern, Immunohistochemistry, Enzyme Activation, Kinetics, SUBUNIT, SURVIVAL
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 383 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |