Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2005 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Regulation of Urokinase Receptor Proteolytic Function by the Tetraspanin CD82

Authors: Bass, Rosemary; Werner, Finn; Odintsova, Elena; Sugiura, Tsuyoshi; Berditchevski, Fedor; Ellis, Vincent;

Regulation of Urokinase Receptor Proteolytic Function by the Tetraspanin CD82

Abstract

The high affinity interaction between the urokinase-type plasminogen activator (uPA) and its glycolipid-anchored cellular receptor (uPAR) promotes plasminogen activation and the efficient generation of pericellular proteolytic activity. We demonstrate here that expression of the tetraspanin CD82/KAI1 (a tumor metastasis suppressor) leads to a profound effect on uPAR function. Pericellular plasminogen activation was reduced by approximately 50-fold in the presence of CD82, although levels of components of the plasminogen activation system were unchanged. uPAR was present on the cell surface and molecularly intact, but radioligand binding analysis with uPA and anti-uPAR antibodies revealed that it was in a previously undetected cryptic form unable to bind uPA. This was not due to direct interactions between uPAR and CD82, as they neither co-localized on the cell surface nor could be co-immunoprecipitated. However, expression of CD82 led to a redistribution of uPAR to focal adhesions, where it was shown by double immunofluorescence labeling to co-localize with the integrin alpha(5)beta(1), which was also redistributed in the presence of CD82. Co-immunoprecipitation experiments showed that, in the presence of CD82, uPAR preferentially formed stable associations with alpha(5)beta(1), but not with a variety of other integrins, including alpha(3)beta(1). These data suggest that CD82 inhibits the proteolytic function of uPAR indirectly, directing uPAR and alpha(5)beta(1) to focal adhesions and promoting their association with a resultant loss of uPA binding. This represents a novel mechanism whereby tetraspanins, integrins, and uPAR, systems involved in cell adhesion and migration, cooperate to regulate pericellular proteolytic activity and may suggest a mechanism for the tumor-suppressive effects of CD82/KAI1.

Related Organizations
Keywords

Focal Adhesions, Integrins, Membrane Glycoproteins, Dose-Response Relationship, Drug, Cell Membrane, Integrin alpha3beta1, Kangai-1 Protein, Immunohistochemistry, Cell Line, Cross-Linking Reagents, Microscopy, Fluorescence, Antigens, CD, Cell Movement, Gangliosides, Cell Adhesion, Humans, Immunoprecipitation, Biotinylation, Mammary Glands, Human, Integrin alpha5beta1

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    52
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
52
Top 10%
Top 10%
Top 10%
gold