Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Amino Acidsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Amino Acids
Article . 2011 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Amino Acids
Article . 2012
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Regulation of xCT expression and system $$ x_{\text{c}}^{ - } $$ function in neuronal cells

Authors: Jan Lewerenz; Pamela Maher; Axel Methner;

Regulation of xCT expression and system $$ x_{\text{c}}^{ - } $$ function in neuronal cells

Abstract

The glutamate/cystine antiporter system x(c)(-) transports cystine into cells in exchange for glutamate at a ratio of 1:1. It is composed of a specific light chain, xCT, and a heavy chain, 4F2, linked by a disulfide bridge. Intracellularly, cystine is reduced into cysteine, the rate-limiting precursor of glutathione (GSH), an important small molecule antioxidant. Several lines of evidence suggest that the expression of xCT and thereby the presence system x(c)(-) activity plays an important role in the brain. First, it regulates extracellular glutamate concentrations. Second, as brain is prone to oxidative stress due to its high oxygen consumption and lipid content, system x(c)(-) by favoring GSH synthesis, may prevent oxidative damage. Thus, to understand how xCT expression and system x(c)(-) activity are regulated in the central nervous system is of utmost importance. In this review, we will summarize the current knowledge about the molecular basis by which xCT expression and system x(c)(-) activity are regulated in neuronal cell lines, especially the hippocampal cell line, HT22. In addition, we will relate these pathways to findings in other cell types, especially those found in the central nervous system. We will focus on the signaling pathways that modulate the transcription of the xCT gene. Furthermore, we describe possible pathways that modify system x(c)(-) activity beyond the level of xCT transcription, including regulation on the level of membrane trafficking and substrate availability, especially the regulation by glutamate transport through excitatory amino acid transporters.

Keywords

Neurons, Amino Acid Transport System y+, Humans

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    76
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
76
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!