
doi: 10.3390/sym12030330
We investigate the deformations of the Sasaki–Einstein structures of the five-dimensional spaces T 1 , 1 and Y p , q by exploiting the transverse structure of the Sasaki manifolds. We consider local deformations of the Sasaki structures preserving the Reeb vector fields but modify the contact forms. In this class of deformations, we analyze the transverse Kähler–Ricci flow equations. We produce some particular explicit solutions representing families of new Sasakian structures.
contact geometry, Sasaki–Einstein spaces, Sasaki–Ricci flow
contact geometry, Sasaki–Einstein spaces, Sasaki–Ricci flow
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
