Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Metabolismarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Metabolism
Article . 2006 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Metabolism
Article . 2006
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The messenger RNA profiles in liver, hypothalamus, white adipose tissue, and skeletal muscle of female Zucker diabetic fatty rats after topiramate treatment

Authors: Yin, Liang; Pengxiang, She; Xiwei, Wang; Keith, Demarest;

The messenger RNA profiles in liver, hypothalamus, white adipose tissue, and skeletal muscle of female Zucker diabetic fatty rats after topiramate treatment

Abstract

Topiramate (TPM) is a novel neurotherapeutic agent approved for the treatment of epilepsy and for migraine prophylaxis. It has been observed that in obese-associated, type 2 diabetic rodent models, TPM treatment reduced the body weight gain, improved insulin sensitivity, and enhanced glucose-regulated insulin release. A long-term treatment with TPM thus ameliorated obesity and diabetic syndromes in female Zucker diabetic fatty rats and db/db mice. The molecular mechanisms of TPM antiobesity and antidiabetic effects remain unknown. We have applied DNA microarray technology to explore genes that might be involved in the mechanisms by which TPM improves insulin sensitivity and blood glucose handling, as well as body weight control. In female Zucker diabetic fatty rats, 7-day TPM treatment significantly reduced the plasma levels of glucose and triglyceride in a dose-dependent manner. The DNA microarray data revealed that TPM treatment altered messenger RNA profiles in liver, hypothalamus, white adipose tissue, and skeletal muscle. The most marked effect of TPM on gene expression occurred in liver with those genes related with metabolic enzymes and signaling regulatory proteins involved in energy metabolism. TPM treatment decreased messenger RNA amounts for sterol regulatory element binding protein-1c, stearoyl-coenzyme A (CoA) desaturase-1, choline kinase, and fatty acid CoA ligase, long chain 4. TPM also up-regulated 3 cholesterol synthesis genes. In addition, the short-term effect of TPM on gene expression was examined at 16 hours after a single administration. TPM markedly reduced hepatic expression of genes related with fatty acid synthesis, eg, stearoyl-CoA desaturase and acetyl-CoA carboxylase. TPM also changed genes related with fatty acid beta-oxidation, increased 3-2-trans-enoyl-CoA isomerase and mitochondrial acyl-CoA thioesterase, and decreased fatty acid CoA ligase (long chain 2 and long chain 5). These gene expression changes were independent of food intake as shown by pair feeding. Our results suggest that TPM regulates hepatic expression of genes involved in lipid metabolism, which could be part of the mechanisms by which TPM reduces plasma triglyceride levels in obese diabetic rodents.

Keywords

Blood Glucose, Gene Expression Profiling, Fatty Acids, Hypothalamus, Down-Regulation, Fructose, Lipids, Hormones, Rats, Eating, Cholesterol, Adipose Tissue, Liver, Animals, Female, Anti-Obesity Agents, RNA, Messenger, Energy Metabolism, Muscle, Skeletal, Oligonucleotide Array Sequence Analysis

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!