
With the fast development of optoelectronic technologies, the demands of flexible, thin and nonplanar optoelectronic devices are rising. Advanced multi-functional fibers based on the preform-to-fiber thermal drawing method provide a promising solution for the next generation optoelectronic devices for waveguides, sensing, and energy harvesting systems. By involving diverse materials such as semiconductors, conductors, and insulators into the fiber fabrication, the achieved advanced fibers can be introduced with a variety of precise structures in the right scales and operated with many optoelectronic functionalities, which creates the possibilities for developing novel optoelectronic devices such as smart fabrics, e-skins, and flexible textiles. Recently, several notable progresses and breakthroughs on promoting the multi-material optoelectronic fibers have been achieved, enabling fiber devices with multiple functionalities and engaging impactful applications. Here, fundamentals of the fiber drawing process, basic principles of fiber materials science, the development of advanced optoelectronic fibers, and milestone applications are summarized and discussed. Moreover, the challenges, prospects, and promising opportunities for future multi-material optoelectronic fibers are also presented.
Flexible Devices, :Materials::Functional materials [Engineering], Optoelectronic Sensors, Smart Textiles, Thermal Drawing Process, Optoelectronic Fibers
Flexible Devices, :Materials::Functional materials [Engineering], Optoelectronic Sensors, Smart Textiles, Thermal Drawing Process, Optoelectronic Fibers
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 31 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
