<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
We introduce giotto-ph, a high-performance, open-source software package for the computation of Vietoris-Rips barcodes. giotto-ph is based on Morozov and Nigmetov's lockfree (multicore) implementation of Ulrich Bauer's Ripser package. It also contains a re-working of the GUDHI library's implementation of Boissonnat and Pritam's Edge Collapser, which can be used as a pre-processing step to dramatically reduce overall run-times in certain scenarios. Our contribution is twofold: on the one hand, we integrate existing state-of-the-art ideas coherently in a single library and provide Python bindings to the C++ code. On the other hand, we increase parallelization opportunities and improve overall performance by adopting more efficient data structures. Our persistent homology backend establishes a new state of the art, surpassing even GPU-accelerated implementations such as Ripser++ when using as few as 5-10 CPU cores. Furthermore, our implementation of Edge Collapser has fewer software dependencies and improved run-times relative to GUDHI's original implementation.
18 pages, 7 figures
G.4, Computational Geometry (cs.CG), FOS: Computer and information sciences, 68R99, Computer Science - Computational Geometry, Computer Science - Mathematical Software, G.2.2, Mathematical Software (cs.MS), G.4; G.2.2
G.4, Computational Geometry (cs.CG), FOS: Computer and information sciences, 68R99, Computer Science - Computational Geometry, Computer Science - Mathematical Software, G.2.2, Mathematical Software (cs.MS), G.4; G.2.2
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |