Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://arxiv.org/pdf...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.2140/gtm.20...
Article . 2009 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Homotopic Hopf–Galois extensions: Foundations and examples

Authors: Kathryn Hess;

Homotopic Hopf–Galois extensions: Foundations and examples

Abstract

Hopf‐Galois extensions of rings generalize Galois extensions, with the coaction of a Hopf algebra replacing the action of a group. Galois extensions with respect to a group G are the Hopf‐Galois extensions with respect to the dual of the group algebra of G . Rognes recently defined an analogous notion of Hopf‐Galois extensions in the category of structured ring spectra, motivated by the fundamental example of the unit map from the sphere spectrum to MU . This article introduces a theory of homotopic Hopf‐Galois extensions in a monoidal category with compatible model category structure that generalizes the case of structured ring spectra. In particular, we provide explicit examples of homotopic Hopf‐Galois extensions in various categories of interest to topologists, showing that, for example, a principal fibration of simplicial monoids is a homotopic Hopf‐ Galois extension in the category of simplicial sets. We also investigate the relation of homotopic Hopf‐Galois extensions to descent. 16W30, 55U35; 13B05, 55P42, 57T05, 57T30

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average