Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Demonstratio Mathema...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Demonstratio Mathematica
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Demonstratio Mathematica
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Demonstratio Mathematica
Article . 2020
Data sources: DOAJ
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2020
Data sources: zbMATH Open
https://dx.doi.org/10.60692/kb...
Other literature type . 2020
Data sources: Datacite
https://dx.doi.org/10.60692/xv...
Other literature type . 2020
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Two new forms of ordered soft separation axioms

شكلان جديدان من بديهيات الفصل الناعمة المرتبة
Authors: Tareq M. Al-shami; M. E. El-Shafei;

Two new forms of ordered soft separation axioms

Abstract

AbstractThe goal of this work is to introduce and study two new types of ordered soft separation axioms, namely soft Ti-ordered and strong soft Ti-ordered spaces (i = 0, 1, 2, 3, 4). These two types are formulated with respect to the ordinary points and the distinction between them is attributed to the nature of the monotone neighborhoods. We provide several examples to elucidate the relationships among these concepts and to show the relationships associate them with their parametric topological ordered spaces and p-soft Ti-ordered spaces. Some open problems on the relationships between strong soft Ti-ordered and soft Ti-ordered spaces (i = 2, 3, 4) are posed. Also, we prove some significant results which associate both types of the introduced ordered axioms with some notions such as finite product soft spaces, soft topological and soft hereditary properties. Furthermore, we describe the shape of increasing (decreasing) soft closed and open subsets of soft regularly ordered spaces; and demonstrate that a condition of strong soft regularly ordered is sufficient for the equivalence between p-soft T1-ordered and strong soft T1-ordered spaces. Finally, we establish a number of findings that associate soft compactness with some ordered soft separation axioms initiated in this work.

Related Organizations
Keywords

Partially ordered set, Higher separation axioms (completely regular, normal, perfectly or collectionwise normal, etc.), Linearly ordered topological spaces, generalized ordered spaces, and partially ordered spaces, Social Sciences, Geometry, Separation axiom, Management Science and Operations Research, Decision Sciences, 54d15, Lower separation axioms (\(T_0\)--\(T_3\), etc.), soft ti-ordered and strong soft ti-ordered spaces (i = 0, 1, 2, 3, 4), Fuzzy Logic and Residuated Lattices, Topological Spaces, QA1-939, FOS: Mathematics, Axiom, Compactness, monotone soft neighborhood, monotone soft open set, Application of Soft Set Theory in Decision Making, Pure mathematics, 54d10, 54d30, Discrete mathematics, 54f05, Computational Theory and Mathematics, Combinatorics, Computer Science, Physical Sciences, Soft Set Theory, soft \(T_i\)-ordered and strong soft \(T_i\)-ordered spaces \((i = 0,1,2,3,4)\), Mathematics, Topological space

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
gold
Related to Research communities