Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Astronomy and Comput...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Astronomy and Computing
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research Collection
Article . 2023
License: CC BY
https://dx.doi.org/10.48550/ar...
Article . 2022
License: CC BY NC ND
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

sympy2c: From symbolic expressions to fast C/C++ functions and ODE solvers in Python

Authors: U. Schmitt; B. Moser; C.S. Lorenz; A. Réfrégier;

sympy2c: From symbolic expressions to fast C/C++ functions and ODE solvers in Python

Abstract

Computer algebra systems play an important role in science as they facilitate the development of new theoretical models. The resulting symbolic equations are often implemented in a compiled programming language in order to provide fast and portable codes for practical applications. We describe sympy2c, a new Python package designed to bridge the gap between the symbolic development and the numerical implementation of a theoretical model. sympy2c translates symbolic equations implemented in the SymPy Python package to C/C++ code that is optimized using symbolic transformations. The resulting functions can be conveniently used as an extension module in Python. sympy2c is used within the PyCosmo Python package to solve the Einstein-Boltzmann equations, a large system of ODEs describing the evolution of linear perturbations in the Universe. After reviewing the functionalities and usage of sympy2c, we describe its implementation and optimization strategies. This includes, in particular, a novel approach to generate optimized ODE solvers making use of the sparsity of the symbolic Jacobian matrix. We demonstrate its performance using the Einstein-Boltzmann equations as a test case. sympy2c is widely applicable and may prove useful for various areas of computational physics. sympy2c is publicly available at https://cosmology.ethz.ch/research/software-lab/sympy2c.html

28 pages, 5 figures, 5 tables, Link to package: https://cosmology.ethz.ch/research/software-lab/sympy2c.html, the described packaged sympy2c is used within arXiv:2112.08395

Country
Switzerland
Related Organizations
Keywords

FOS: Computer and information sciences, Cosmology and Nongalactic Astrophysics (astro-ph.CO), FOS: Physical sciences, code generation, Computational Physics (physics.comp-ph), Computer algebra, Computer Science - Mathematical Software, code generation; ODE solver; Python; Computer algebra, ODE solver, Astrophysics - Instrumentation and Methods for Astrophysics, Physics - Computational Physics, Instrumentation and Methods for Astrophysics (astro-ph.IM), Mathematical Software (cs.MS), Astrophysics - Cosmology and Nongalactic Astrophysics, Python

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
Green
hybrid