
doi: 10.7498/aps.48.274
Pr(Fe1-xCox)2 ribbons have been prepared by melt-spinning method. Their structure, magnetic properties and thermal stability are investigated. It is found that Pr(Fe,Co)2 cubic Laves phase can form only when x≥0.2 at wheel speed of 45m/s. For Pr(Fe0.6Co0.4)2 alloy, at wheel speed of 30m/s, the ribbon consistes of a mixture of Pr2(Fe,Co)17, Pr(Fe,Co)2 and rare earth-rich phase. Almost Pr(Fe0.6Co0.4)2 compound a small amount of amorphous phase is observed at wheel speed up to 45m/s. Pr(Fe0.6Co0.4)2 compound becomes unstable above 770℃. The resub-bonded Pr(Fe0.6Co0.4)2 nanocrystalline compound which is obtained at wheel speed of 40m/s combines high magnetostriction (λ∥-λ⊥=140×10-6), with significant magnetic coercivity, iHc=398kA/m.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
