Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2008
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On a new multivariate sampling paradigm and a polyspline Shannon function

Authors: Ognyan Kounchev; Hermann Render;

On a new multivariate sampling paradigm and a polyspline Shannon function

Abstract

In the monograph Kounchev, O. I., Multivariate Polysplines. Applications to Numerical and Wavelet Analysis, Academic Press, San Diego-London, 2001, and in the paper Kounchev O., Render, H., Cardinal interpolation with polysplines on annuli, Journal of Approximation Theory 137 (2005) 89--107, we have introduced and studied a new paradigm for cardinal interpolation which is related to the theory of multivariate polysplines. In the present paper we show that this is related to a new sampling paradigm in the multivariate case, whereas we obtain a Shannon type function $S(x) $ and the following Shannon type formula: $f(r��) =\sum_{j=-\infty}^{\infty}\int_{\QTR{Bbb}{S}^{n-1}}S(e^{-j}r��) f(e^{j}��) d��.$ This formula relies upon infinitely many Shannon type formulas for the exponential splines arising from the radial part of the polyharmonic operator $��^{p}$ for fixed $p\geq 1$. Acknowledgement. The first and the second author have been partially supported by the Institutes partnership project with the Alexander von Humboldt Foundation. The first has been partially sponsored by the Greek-Bulgarian bilateral project BGr-17, and the second author by Grant MTM2006-13000-C03-03 of the D.G.I. of Spain.

Submitted to the conference proceedings of SAMPTA07 held in Thessaloniki, Greece, 2007

Keywords

FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT), 32A50, 60G35, 68U10, FOS: Mathematics, Mathematics - Numerical Analysis, Numerical Analysis (math.NA)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green