Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Nuclear M...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Nuclear Materials
Article . 1965 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The reaction of sintered aluminium products with uranium dioxide and monocarbide

Authors: T. Lauritzen; P. Knudsen;

The reaction of sintered aluminium products with uranium dioxide and monocarbide

Abstract

The compatibility of SAP 930 with uranium dioxide and uranium monocarbide was investigated in the temperature range 450–600° C. The results indicate that a severe reaction occurs between SAP 930 and UO2 within 8000 hours at 600° C, a slight reaction at 600° C for 1000 hours and after 11 900 hours at 525° C, and no reaction in 14 300 hours at 450° C. Of the three grades of UC tested (hot pressed, arc cast, cold pressed and sintered) the slightly substoichiometric, hot-pressed UC is judged to be least compatible with SAP 930, reaction occurring after 7300 hours at 450° C. No reaction was observed between SAP 930 and the other carbides at this temperature. All SAP−UC combinations are incompatible at 600° C for as little as 100 hours of heat treatment. Tests designed to study the effect of a diffusion barrier on the SAP−UC reaction have shown that anodized SAP 930 and the three uranium carbides are fully compatible at 450 and 525° C for at least 14 300 hours. Mechanical breakdown of the barrier within 8000 hours, however, limits the application of anodized SAP 930 at 600° C. X-ray diffraction analyses of the reaction products formed in each material combination tested show that the primary constituent is the intermetallic compound UAl3. A second phase, visible at the SAP/reaction-product interface, has been identified as UAl4 on the basis of its observed anisotropy and its position in the reaction zone.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!