
AbstractInhibitor of apoptosis proteins (IAPs) maintain the balance between cell proliferation and cell death by inhibiting caspase activities and mediating immune responses. In the present study, a homolog of IAP (designated as EsIAP1) was identified from Chinese mitten crab Eriocheir sinensis. EsIAP1 consisted of 451 amino acids containing two baculoviral IAP repeat (BIR) domains with the conserved Cx2 Cx6 Wx3 Dx5 Hx6 C motifs. EsIAP1 mRNA was expressed in various tissues and its expression level in hemocytes increased significantly (p < 0.01) at 12–48 h after lipopolysaccharide stimulation. In the hemocytes, EsIAP1 protein was mainly distributed in the cytoplasm. The hydrolytic activity of recombinant EsCaspase-3/7-1 against the substrate Ac-DEVD-pNA decreased after incubation with rEsIAP1. Moreover, rEsIAP1 could directly combine with rEsCaspase-3/7-1 in vitro. After EsIAP1 was interfered by dsRNA, the mRNA expression and the hydrolytic activity of EsCaspase-3/7-1 increased significantly, which was 2.26-fold (p < 0.05) and 1.71-fold (p < 0.05) compared to that in the dsGFP group, respectively. These results collectively demonstrated that EsIAP1 might play an important role in apoptosis pathway by regulating the activity of EsCaspase-3/7-1 in E. sinensis.
Caspase 7, Gene Expression Regulation, Brachyura, Caspase 3, Animals, Apoptosis, Article, Baculoviral IAP Repeat-Containing 3 Protein, Arthropod Proteins
Caspase 7, Gene Expression Regulation, Brachyura, Caspase 3, Animals, Apoptosis, Article, Baculoviral IAP Repeat-Containing 3 Protein, Arthropod Proteins
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
