Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2013 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Inflammatory monocytes and Fcγ receptor IV on osteoclasts are critical for bone destruction during inflammatory arthritis in mice

Authors: Michaela, Seeling; Ulrike, Hillenhoff; Jean Pierre, David; Georg, Schett; Jan, Tuckermann; Anja, Lux; Falk, Nimmerjahn;

Inflammatory monocytes and Fcγ receptor IV on osteoclasts are critical for bone destruction during inflammatory arthritis in mice

Abstract

Destruction of bone tissue by osteoclasts represents a severe pathological phenotype during inflammatory arthritis and results in joint pain and bone malformations. Previous studies have established the essential role of cytokines including TNFα and receptor–ligand interactions, such as the receptor activator of nuclear factor-kappa B–receptor activator of nuclear factor-kappa B ligand interaction for osteoclast formation during joint inflammation. Moreover, autoantibodies contribute to joint inflammation in inflammatory arthritis by triggering cellular fragment crystallizable (Fc)γ receptors (FcγR), resulting in the release of proinflammatory cytokines and chemokines essential for recruitment and activation of innate immune effector cells. In contrast, little is known about the expression pattern and function of different FcγRs during osteoclast differentiation. This would allow osteoclasts to directly interact with autoantibody immune complexes, rather than being influenced indirectly via proinflammatory cytokines released upon immune complex binding to other FcγR-expressing innate immune cells. To address this question, we studied FcγR expression and function on osteoclasts during the steady state and during acute joint inflammation in a model of inflammatory arthritis. Our results suggest that osteoclastogenesis is directly influenced by IgG autoantibody binding to select activating FcγRs on immature osteoclasts, resulting in enhanced osteoclast generation and, ultimately, bone destruction.

Keywords

Inflammation, Male, Mice, Inbred C57BL, Mice, Knockout, Mice, Receptors, IgG, Animals, Antigens, Ly, Osteoclasts, Cell Differentiation, Bone Resorption, Arthritis, Experimental, Monocytes

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    164
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
164
Top 1%
Top 10%
Top 1%
bronze