 Downloads provided by UsageCounts
Downloads provided by UsageCounts
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script> Copyright policy )
 Copyright policy )Network slicing is a key capability for next generation mobile networks. It enables infrastructure providers to cost effectively customize logical networks over a shared infrastructure. A critical component of network slicing is resource allocation, which needs to ensure that slices receive the resources needed to support their services while optimizing network efficiency. In this paper, we propose a novel approach to slice-based resource allocation named Guaranteed seRvice Efficient nETwork slicing (GREET). The underlying concept is to set up a constrained resource allocation game, where ( i ) slices unilaterally optimize their allocations to best meet their (dynamic) customer loads, while ( ii ) constraints are imposed to guarantee that, if they wish so, slices receive a pre-agreed share of the network resources. The resulting game is a variation of the well-known Fisher market, where slices are provided a budget to contend for network resources (as in a traditional Fisher market), but (unlike a Fisher market) prices are constrained for some resources to ensure that the pre-agreed guarantees are met for each slice. In this way, GREET combines the advantages of a share-based approach (high efficiency by flexible sharing) and reservation-based ones (which provide guarantees by assigning a fixed amount of resources). We characterize the Nash equilibrium, best response dynamics, and propose a practical slice strategy with provable convergence properties. Extensive simulations exhibit substantial improvements over network slicing state-of-the-art benchmarks.
Networking and Internet Architecture (cs.NI), FOS: Computer and information sciences, Telecomunicaciones, Resource management, Base stations, Dynamic scheduling, Vehicle dynamics, Nash equilibrium, Computer Science - Networking and Internet Architecture, Games, Network slicing
Networking and Internet Architecture (cs.NI), FOS: Computer and information sciences, Telecomunicaciones, Resource management, Base stations, Dynamic scheduling, Vehicle dynamics, Nash equilibrium, Computer Science - Networking and Internet Architecture, Games, Network slicing
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% | 
| views | 22 | |
| downloads | 39 | 

 Views provided by UsageCounts
Views provided by UsageCounts Downloads provided by UsageCounts
Downloads provided by UsageCounts