Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mathematics of Compu...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mathematics of Computation
Article . 1992 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Doubly cuspidal cohomology for principal congruence subgroups of 𝐺𝐿(3,𝑍)

Authors: Mark McConnell; Avner Ash;

Doubly cuspidal cohomology for principal congruence subgroups of 𝐺𝐿(3,𝑍)

Abstract

The cohomology of arithmetic groups is made up of two pieces, the cuspidal and noncuspidal parts. Within the cuspidal cohomology is a subspace— the f-cuspidal cohomology—spanned by the classes that generate representations of the associated finite Lie group which are cuspidal in the sense of finite Lie group theory. Few concrete examples of f-cuspidal cohomology have been computed geometrically, outside the cases of rational rank 1, or where the symmetric space has a Hermitian structure. This paper presents new computations of the f-cuspidal cohomology of principal congruence subgroups Γ ( p ) \Gamma (p) of GL ( 3 , Z ) {\text {GL}}(3,\mathbb {Z}) of prime level p. We show that the f-cuspidal cohomology of Γ ( p ) \Gamma (p) vanishes for all p ⩽ 19 p \leqslant 19 with p ≠ 11 p \ne 11 , but that it is nonzero for p = 11 p = 11 . We give a precise description of the f-cuspidal cohomology for Γ ( 11 ) \Gamma (11) in terms of the f-cuspidal representations of the finite Lie group GL ( 3 , Z / 11 ) {\text {GL}}(3,\mathbb {Z}/11) . We obtained the result, ultimately, by proving that a certain large complex matrix M is rank-deficient. Computation with the SVD algorithm gave strong evidence that M was rank-deficient; but to prove it, we mixed ideas from numerical analysis with exact computation in algebraic number fields and finite fields.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Top 10%
Average
bronze