
We report in this paper how we proved memory safety of a complex Windows image parser written in low-level C in only three months of work and using only three core techniques, namely 1 symbolic execution at the x86 binary level, 2 exhaustive program path enumeration and testing, and 3 user-guided program decomposition and summarization. We also used a new tool, named MicroX, for executing code fragments in isolation using a custom virtual machine designed for testing purposes. As a result of this work, we are able to prove, for the first time, that a Windows image parser is memory safe, i.e., free of any buffer-overflow security vulnerabilities, modulo the soundness of our tools and several additional assumptions regarding bounding input-dependent loops, fixing a few buffer-overflow bugs, and excluding some code parts that are not memory safe by design. In the process, we also discovered and fixed several limitations in our tools, and narrowed the gap between systematic testing and verification.
QA
QA
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
