Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Astronomy & Astr...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Astronomy & Astrophysics
Article . 2021 . Peer-reviewed
License: EDP Sciences Copyright and Publication Licensing Policy
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2021
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

Detectability of continuous gravitational waves from isolated neutron stars in the Milky Way

The population synthesis approach
Authors: Marek Cieślar; Tomasz Bulik; Małgorzata Curyło; Magdalena Sieniawska; Neha Singh; Michał Bejger;

Detectability of continuous gravitational waves from isolated neutron stars in the Milky Way

Abstract

Aims. We estimate the number of pulsars, detectable as continuous gravitational wave sources with the current and future gravitational-wave detectors, assuming a simple phenomenological model of evolving non-axisymmetry of the rotating neutron star. Methods. We employed a numerical model of the Galactic neutron star population, with the properties established by comparison with radio observations of isolated Galactic pulsars. We generated an arbitrarily large synthetic population of neutron stars and evolved their period, magnetic field, and position in space. We used a gravitational wave emission model based on exponentially decaying ellipticity (i.e. non-axisymmetry of the star) with no assumption of the origin of a given ellipticity. We calculated the expected signal in a given detector for a one-year observation, and assumed a detection criterion of the signal-to-noise ratio of 11.4, comparable to a targeted continous wave search. We analysed the detectable population separately in each detector: Advanced LIGO, Advanced Virgo, and the planned Einstein Telescope. In the calculation of the expected signal we neglect the frequency change of the signals due to the source’s spindown and the Earth’s motion with respect to the solar barycentre. Results. With conservative values for the neutron star evolution (a supernova rate of once per 100 years, initial ellipticity ϵ0 ≃ 10−5 with no decay of the ellipticity η = thub ≃ 104 Myr), the expected number of detected neutron stars is 0.15 (based on a simulation of 10 M stars) for the Advanced LIGO detector. A broader study of the parameter space (ϵ0, η) is presented. With the planned sensitivity for the Einstein Telescope, and assuming the same ellipiticity model, the expected detection number is 26.4 pulsars during a one-year observing run.

Keywords

High Energy Astrophysical Phenomena (astro-ph.HE), FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), Astrophysics - High Energy Astrophysical Phenomena, General Relativity and Quantum Cosmology

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Top 10%
Green
bronze