Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Advances in Space Re...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Advances in Space Research
Article . 2004 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The geostationary scanning imaging absorption spectrometer (GeoSCIA) as part of the geostationary tropospheric pollution explorer (GeoTROPE) mission: requirements, concepts and capabilities

Authors: Bovensmann, H.; Eichmann, K. U.; Noel, S.; Flaud, J. M.; Orphal, J.; Monks, P. S.; Corlett, G. K.; +5 Authors

The geostationary scanning imaging absorption spectrometer (GeoSCIA) as part of the geostationary tropospheric pollution explorer (GeoTROPE) mission: requirements, concepts and capabilities

Abstract

Abstract One of the major challenges facing atmospheric sciences is to assess, understand and quantify the impact of natural and anthropogenic pollution on the quality of life on Earth on a local, regional and continental scale. To understand the effects of regional pollution on a continental scale there is the requirement to link diurnal with seasonal and annual timescales, as well as local with regional and continental spatial scales, which can be addressed by performing sub-hourly measurements at appropriate horizontal and vertical resolution. Tropospheric observations from low-Earth orbit (LEO) platforms with instruments like TOMS and GOME have already demonstrated the potential of detecting constituents relevant for air quality but they are limited, for example by the daily revisit time and local cloud cover statistics. Measurements from geostationary orbit (GEO) offer an practical approach to the observation of diurnal variation from space with the pertinent horizontal resolution. As a consequence the geostationary tropospheric pollution explorer (GeoTROPE) mission has been proposed. It consists of two instruments: The geostationary Fourier imaging spectrometer (GeoFIS) covering the thermal infrared and the geostationary scanning imaging absorption spectrometer (GeoSCIA) covering the ultraviolet–visible and short-wave-infrared (UV–VIS–SWIR) regions. This paper summarises the potential and feasibility of tropospheric remote sensing from geostationary orbit by measuring the backscattered solar radiance with an UV–VIS–SWIR imaging spectrometer (GeoSCIA). GeoSCIA is a medium resolution imaging grating spectrometer using 2-D CCDs for spectral and spatial imaging. Instrument requirements, concepts and capabilities will be presented. The estimated retrieval precisions for the tropospheric constituents will be discussed. The combined analysis of the solar backscatter measurements with measurements in the thermal IR by GeoFIS demonstrates that the unique combination of observations in these spectral ranges allow to measure the concentrations of the relevant constituents down to the boundary layer or the cloud top height with good accuracy.

Country
Germany
Keywords

Earth sciences, info:eu-repo/classification/ddc/550, 550, ddc:550

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Average
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?