
pmid: 24333777
Large conductance calcium-activated potassium (BKCa) channels are important regulators of neuronal excitability. Although there is electrophysiological evidence for BKCa channel expression in sensory neurons, their in vivo functions in pain processing have not been fully defined. Using a specific antibody, we demonstrate here that BKCa channels are expressed in subpopulations of peptidergic and nonpeptidergic nociceptors. To test a functional association of BKCa channel activity in sensory neurons with particular pain modalities, we generated mice in which BKCa channels are ablated specifically from sensory neurons and analyzed their behavior in various models of pain. Mutant mice showed increased nociceptive behavior in models of persistent inflammatory pain. However, their behavior in models of neuropathic or acute nociceptive pain was normal. Moreover, systemic administration of the BKCa channel opener, NS1619, inhibited persistent inflammatory pain. Our investigations provide in vivo evidence that BKCa channels expressed in sensory neurons exert inhibitory control on sensory input in inflammatory pain states.
Inflammation, Male, Mice, Knockout, Sensory Receptor Cells, Pain, Mice, Inbred C57BL, Mice, Gene Expression Regulation, Animals, Female, Large-Conductance Calcium-Activated Potassium Channel alpha Subunits, Pain Measurement
Inflammation, Male, Mice, Knockout, Sensory Receptor Cells, Pain, Mice, Inbred C57BL, Mice, Gene Expression Regulation, Animals, Female, Large-Conductance Calcium-Activated Potassium Channel alpha Subunits, Pain Measurement
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 46 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
